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I. INTRODUCTION

Squeeze-film elements are widely used for vibration control and force

isolation. The dynamic characteristics of these components are of great importance

in the design and analysis of rotor-bearlng systems.

It is generally assumed that Reynolds equation can be used to provide an

adequate model for a bearing oil-film. Various simplifying assumptions are used,

e.g. the short bearing approximation, to enable the equation to be solved and thus

yield an expression for the pressure distribution in the oil-film (I). The oil-

film force is obtained by integrating the pressure distribution circumferentially

and along the axis of the bearing, and this gives both positive and negative

pressure regions. It is frequently assumed for simplicity that negative pressures

cannot be sustained in a cavitated oil-film, hence the oil-film force is obtained by

performing the integration only in the positive pressure region. It follows that

the limits of integration are of great importance (2,3).

It is often assumed that squeeze-film bearing coefficients can be deduced from

those obtained from a journal bearing simply by suppressing the angular rotation.
This leads to the conclusion that the stiffness coefficients are zero whereas in

practice a squeeze-film bearing can support a dynamic load without the use of

centering springs. The limitation of this assumption was noted by Holmes (3) in

relation to the velocity coefficients. He suggested that the only case in which

the damping coefficients for a squeeze-film bearing and a journal bearing would be

equal is a full film of oil because the limits of integration for both bearing films

are then identical. This limitation has been frequently overlooked. Thus in

general the linearized coefficients used to model a squeeze-film bearing cannot be

deduced from journal bearing coefficients. The problem determining squeeze-film

coefficients has been tackled by various authors using several different approaches

e.g. (4,5).

In this paper the squeeze-film force equations, with the correct integration

limits, are used to show that the classical linearization process cannot be adopted

to derive oil-film coefficients for a squeeze-film bearing. This leads to a

discussion of the physical meaning and usefulness of linearized models to represent

squeeze-film bearings.
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I .2 Nomenclature

c ... etc.

ce¢

d

e

F ,Fe ¢ ,Fej ,Fcj

gl 'glj .... etc.

h

1

oil-film damping coefficients

radial clearance

mass unbalance eccentricity of the shaft

shaft displacement from bearing centre line

oil_film forces in n , n directions for squeeze-film

bearing and journal _ear_ng respectively

particular integral solutions for squeeze-film bearing and

journal bearing respectively
oil-film thickness

bearing length

ne ,n_
P
R

V

Z

Z

g

g

_o

_o
el,e 2
q_
rl

al

II
(')
( )T transpose

direction vectors defined in Fig. I

oil-film pressure in the clearance

bearing radius

velocity vector in Fig. I

axis along the bearing length

state vector

eccentricity ratio e/c

static value of

attitude angle

static value of ¢
oil-film limits

angle defined in Fig. I

small change in E

small change in

angular velocity of journal

fluid viscosity

differential with respect to time

2. OIL FILM FORCES

The pressure distribution p in a short bearing of length 1 is given by

Reynolds' equation as

(h3 3_P) = 12 _

3z _z c3
(e cos e + e ($ - _/2) sin e) (I)

where z is the distance along the longitudinal bearing axis, c is the clearance and

is the oil viscosity. Variables e, ¢ and e are defined in Fig. I, and _ is the

angular velocity of the journal (zero for a squeeze-film bearing). Integration of

equation (I) twice with respect to z and insertion of the boundary conditions p = 0,

z = ±1/2 gives the pressure distribution

p (e) = ---
c3h 3

(e cos B + e ($ - m/2) sin e) (2)

Thus the oil-film forces along the orthogonal axes, defined in Fig. I are
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e2

F e - R1 I p cos e de

el (3)

2
F¢ - R1 p sin e de

eI

For an uncavltated film the limits are 0 to 27. For a ruptured film the

force is computed by using only the positive region and assuming zero pressure

elsewhere. A positive pressure occurs in the arc eI to e I + _ defined from
equation (I) by

cos e + e (¢ - m/2) sin 8 < 0

That is tan el--- (4)
e(q_ - _/2)

Equation (4) is central in explaining the different characteristics of journal and

squeeze-film bearings.

2.1 Journal Bearing

For small changes in the attitude angle ¢, as occurs in a journal bearing ¢ <<

_/2.,

tan e. _ 2_/e_ (5)
1

Since _ is positive e. is always positive, thus the positive pressure arc
I =oscillates with a small amplitude around e. 0. Hence the limits of integration

can be taken as 0 and _ and the oil-film forces are

wR13

Fej= c2 (_ glj ($ - m/2) + _ g2j)

wR13

FCj= 2
c

(E g3j ($ - m/2) + _ glj)

(6)

where glj

g2j

g3j

=- 2 e (I - _) -2

_ (I ÷ 2 e2)(I _ c2) -5/2
2

_E2) -3/2
= _ (1

If _ is set to zero in equation (5) then eI = 7/2 whereas in practice it is known
that in a squeeze film the positive pressure region rotates around the bearing.

2.2. Squeeze-film Bearing

For a ruptured squeeze_film, equation (4) becomes

tan eI _ -e/e$ (7)
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Angle ¢ can be positive or negative depending upon the position of the journal

in the clearance circle (see Fig. I), thus 81 is finite, and can take positive or

negative values. It was at this stage in hfs analysis that White (2) incorrectly

set 81 ; 0 for small values of e. This is equivalent to suppressing angular
motion o the journal, that is to derive the squeeze-film bearing coefficients from

those for a journal bearing by setting _ to zero.

If equation (7) is used, to define the limits of the positive pressure arc,

then as the journal describes an orbit in the clearance circle the cavitation region

rotates. This region is determined by the squeeze velocity and makes a complete

rotation for each rotation of the journal. The maximum pressure occurs in the

direction of the velocity vector V shown in Fig. I. Thus the oil-film behaves in a

totally different manner to that in a journal bearing where there are only small

oscillations of the cavitation region.

With the correct variable limits inserted the oil_film forces for a _ squeeze-

film bearing become (6)

uR13
F -
e 2

C

($ g1+ g2)

uRI 3

C

(8)

= 2 2 _2
where gl - 2_ cos3B I (I - E cos e I

g2 E sin eI [3 + (2-- 5 2) cos2e c2)-2 2 2 )-2= i] (I - (I _ _ cos eI

+ m (1 + 2 2) (1 -" 2 ?5/2

tan B
I

= _

g3 = _ sin 81[I - 2 co 2 81+ e2cos 2

+ _ (I -2) -3/2

+ tan-lie sin e (I - 2)-_]
I

eI -I(I - 2)-I
2 28 _2

(1 - _ cos 1

since 8_ { O, gij { gl etc. and the squeeze-film forces Fe,

from Fej] and FCj.

F cannot be derived

It can be seen from equations (6) and (8) that the oil_film forces are non_

linear functions of the states (_, &, ¢, ¢)

3. LINEARITY

There are many analytical benefits to be gained if linear models can be derived

which adequately represent these non-linear forces. If we define a state vector as

_, one possibilSty is to seek to linearize the system about the equilibrium position

Z defined by Z__ = (s o, O, ¢o' 0). We then assume small perturbations q,_ about Z o,--0
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that is

(co + , , ÷ ' (9)

The procedure defined in equation (9) is used in most of the literature which

is concerned with deriving llnearized oil-film coefficients. When this approach is

applied to a _-film Journal bearing it yields expressions for four stiffness and

four damping coefficients (7). As noted earlier some workers have incorrectly

suggested that by setting m- 0 in these expressions the resulting stiffness and

damping coefficients are obtained for a squeeze,film bearing. To llnearlze about

Z for a squeeze'film we must use equation (8) Consider one coefficient-o

aF
e

e¢ a¢
Z
-o

aF
e

Z
-o

c a¢ a¢

Z
-o

ag I

z
-o

[6 E cos 2 O I sin e I (I - c2cos 2 oI)

i

2 28 2 2 a eI I+ 8 e cos 3 eI (I - E cos I)(E cos eIsin eI )]

a¢ I,z
- o

An expression can be derived for ag2/a$, but this tedious operation need

-I

not be performed. Now eI --tan -_T-' but at the equilibrium point

thus c cannot be evaluated. Hence the classical approach toeI is undefined, e
obtaining linearized oil-_im coefficients cannot be applied to a cavitated squeeze-

film bearing. The question arises: do linear oil-film coefficients have any

meaning for a cavitated squeeze-film bearing? To answer the question it is

necessary to appreciate the physics of the situation.

The linearization described above is performed about a point which is usually

defined as the centre of the orbit. In practice state Z is not achieved, that is
-o

there is no point on the orbit that both velocities are slmultaneously zero. Thus

we must reject the concept of linearized coefficients for a ruptured squeeze-film

bearing, or adopt an alternative approach to obtaining equivalent linearized

coefficients (4,5) or seek a new analytical approach to the problem.

4. FURTHER CONSIDERATIONS

Consider a perturbation _ in E with _ - O.
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If _ is positive the shaft moves against the thin part of the oil-film and a

large negative radial force is produced. If _ is negative the shaft squeezes a

thicker film and the magnitude of the radial force is lower, as shown in Fig. 2.

The force is linear in velocity and the slope depends upon E . However the force

also depends upon the sign of _ (or _) and o

F (_) _ _ F (-_)
e e

This essentially non'linear behaviour is not reproduced by setting

the journal bearing expressions as shown in Fig. 2.

_ = 0 in

Now consider perturbations in with c = O. If is positive a radial force

is produced which seeks to centralise the journal. The magnitude of the force

depends upon _ and e . As shown in Fig. 3 if _ is negative the same centralising

force is produced, th°t is

e e

Once again this highly non-linear behaviour disappears when we compute the

bearing forces from the journal bearing expressions with _ = 0 (Fig. 3).

Figures 2 and 3 demonstrate why the classical approach to linearization breaks

down, namely that the principle of superposition is violated.

CONCLUSIONS

Earlier work by the authors (5) has shown that oil-film forces can be modelled

by linear coefficients. In that work they used identification techniques to

generate numerical values for these coefficients. This paper has shown the

invalidity of applying the perturbation techniques normally used in bearing studies

to derive expressions for linearized coefficients to represent a cavitated oil-film.

Hahn (14) has developed an alternative approach based upon energy techniques to

obtain estimates for linearized coefficients. Some current work being undertaken

by the authors suggests that an alternative analytical approach is possible.

These results will be reported in due course.
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